Inequalities between Littlewood–Richardson coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inequalities between Littlewood-Richardson coefficients

We prove that a conjecture of Fomin, Fulton, Li, and Poon, associated to ordered pairs of partitions, holds for many infinite families of such pairs. We also show that the bounded height case can be reduced to checking that the conjecture holds for a finite number of pairs, for any given height. Moreover, we propose a natural generalization of the conjecture to the case of skew shapes.

متن کامل

Markov Inequalities for Polynomials with Restricted Coefficients

Essentially sharp Markov-type inequalities are known for various classes of polynomials with constraints including constraints of the coefficients of the polynomials. For N and δ > 0 we introduce the class Fn,δ as the collection of all polynomials of the form P x ∑n k h akx k , ak ∈ Z, |ak | ≤ n , |ah| maxh≤k≤n|ak |. In this paper, we prove essentially sharp Markov-type inequalities for polynom...

متن کامل

Mixing MIR inequalities with two divisible coefficients

This paper is a polyhedral study of a generalization of the mixing set where two different, divisible coefficients are allowed for the integral variables. Our results generalize earlier work on mixed integer rounding, mixing, and extensions. They also directly apply to applications such as production planning problems involving lower bounds or start-ups on production, when these are modeled as ...

متن کامل

Linear Elliptic Difference Inequalities with Random Coefficients

We prove various pointwise estimates for solutions of linear elliptic difference inequalities with random coefficients. These estimates include discrete versions of the maximum principle of Aleksandrov and Harnack inequalities and Holder estimates of Krylov and Safonov for elliptic differential operators with bounded coefficients.

متن کامل

Markov- and Bernstein-type Inequalities for Polynomials with Restricted Coefficients

The Markov-type inequality ‖p′‖[0,1] ≤ cn log(n + 1)‖p‖[0,1] is proved for all polynomials of degree at most n with coefficients from {−1, 0, 1} with an absolute constant c. Here ‖·‖[0,1] denotes the supremum norm on [0, 1]. The Bernstein-type inequality |p′(y)| ≤ c (1 − y)2 ‖p‖[0,1] , y ∈ [0, 1) , is shown for every polynomial p of the form

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2006

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2005.05.002